Preliminary communication

π -Cyclopentadienyls of nickel(II) XI. The preparation of π -C₅ H₅ NiSC(S)R complexes

FUMIE SATO and MASAO SATO

Department of Chemical Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan) (Received January 29th, 1973)

SUMMARY

Treatment of the complexes π -C₅H₅NiPBu₃SC(S)R, obtained from the reaction between $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ and the species SC(S)R⁻, in aqueous solution, with HCl results in the complexes π -C₅H₅NiSC(S)R.

When an ether solution of π -C₅H₅NiPBu₃SC(S)CH₂C₆H₅, obtained from the reaction between $[\pi$ -C₅H₅Ni(PBu₃)₂] $^{+}$ Cl⁻¹ and SC(S)CH₂C₆H₅, is treated with aqueous HCl, the solution changes from brown to purple. From this solution black crystals of molecular formula π -C₅H₅NiSC(S)CH₂C₆H₅ (I), m.p. 92–93° (Found: C, 53.65; H, 4.25. C₁₃H₁₂NiS₂ calcd.: C, 53.61; H, 4.12%) are obtained.

The proton NMR spectrum of (I) in CS_2 shows singlets at $\tau 2.86$ (phenyl protons), $\tau 4.82$ (π -cyclopentadienyl protons) and $\tau 6.31$ (methylene protons of the $CH_2 - C_6H_5$ group (Table 1).

An apparent molecular weight determination shows complex (I) to be monomeric (mol.wt. 268 by cryoscopy in benzene, calcd. 291). It is thus clear that SC(S)CH₂C₆H₅⁻ acts as bidentate ligand in (I) as in complex Mn(CO)₄SC(S)C₆H₅⁻² and in general metal salts of dithioacids³.

(I) reacts with PBu₃ in hexane to give π -C₅H₅NiPBu₃SC(S)CH₂C₆H₅.

TABLE 1			and the second	
			Arriver to the	
THE PROTON N	IMR SPEC	TRUM DATA	OF π-C ₅ H ₅ N	iiSC(S)R

R	Chemical shif	Chemical shift (internal TMS)		
	$\tau(\pi \cdot C_s H_s)$	$\tau(-C_6H_5)$	τ(CH ₂)	τ(CH ₃)
C ₆ H ₅	4.69 s ^a	2.00~2.98		
CH ₂ C ₆ H ₅	4.82 s	2.86 s	6.31 s	
C ₂ H ₅	4.80 s		7.49 q	8.78 t

as singlet; t triplet; q quartet.

The complexes π -C₅H₅NiSC(S)C₆H₅ and π -C₅H₅NiSC(S)C₂H₅ were obtained in a similar manner; proton NMR spectral data of all compounds are listed in Table 1.

REFERENCES

- 1 M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 31 (1971) 415.
- 2 I.A. Cohen and F. Basolo, Inorg. Chem., 3 (1964) 1641
- 3 A. Hantzsch and W. Bucerius, Ber., 59 (1926) 793.